
Mind the Gap!

Challenges and Opportunities in
Closing the Algorithms-to-Devices Gap
in Quantum Computing

Margaret Martonosi
Dept. of Computer Science
Princeton University

Work by Princeton Group Members and Alums:
Chuck Garcia
Prakash Murali
Wei Tang
Teague Tomesh
Esin Tureci
Ellie Vogel

~1950’s Classical Computing

Vacuum Tubes, Relay Circuits

Assembly Language

Algorithms

An Analogy: Classical Computing in 1950

Alan Turing in 1950:
“Can Machines Think?”

OS

High-Level Languages

Compiler

Architecture

VLSI Circuits

Semiconductor transistors

Algorithms

~1950’s Classical Computing

Vacuum Tubes, Relay Circuits

Assembly Language

Algorithms

Classical Computing Today: Massive Scaling
Achieved through Innovation and Smart Abstraction

Modular hardware blocks:
Gates, registers

Today’s Classical Computing

OS

High-Level Languages

Compiler

Architecture

VLSI Circuits

Semiconductor transistors

Algorithms Algorithms

Qubit implementations

How best
to fill?

~1950’s Classical Computing

Vacuum Tubes, Relay Circuits

Assembly Language

Algorithms

Quantum Systems Today

Quantum Systems

Modular hardware blocks:
Gates, registers

Today’s Classical Computing

Algorithms to Machines Gap: Status Check
NISQ Era shows
distinct “chapters” of
evolution
1. Compilation and

Mapping
2. Co-Design
3. Bridging NISQ and

Fault-tolerance via
Modularity and
Abstraction

Grovers Algorithm
(Database search)
Shor’s Factoring Alg. (Crypto)

Gap!

Quantum Sim,
Q Chem, QAOA

#Qubits

1

10

100

10000

100000

1000000

1000

Year
1995 2005 20252015

More
Work

Needed!

NISQ

2030 2035 …

This talk: Some examples and opportunities
from each “NISQ Chapter”

Quantum
Compilation and

Optimization

Benchmarking
and Co-Design

Modularity and
Abstraction

Quantum Compilation and Optimization

Mapping to Qubits Mitigating noise and calibration
penalties

Balancing technology tailoring and
portability Gate Set Selection and Optimization

NISQ Chapter 1:
Compilation and

optimization

Prakash Murali et al. ASPLOS’19. https://doi.org/10.1145/3297858.3304075
Prakash Murali, et al. ISCA 2019. https://doi.org/10.1145/3307650.3322273

Ali JavadiAbhari et al. CF 2014. https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf
P. Murali, et al, ISCA 2020. https://ieeexplore.ieee.org/abstract/document/9138945

https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3307650.3322273
https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf
https://ieeexplore.ieee.org/abstract/document/9138945

Our Work: Noise-Adaptive Compilation
• Compile once-per-execution using noise

characterization data
• Strategy 1: Place program qubits onto

hardware qubits based on operation error
rates
• Strategy 2: Reduce decoherence errors by

scheduling gates to finish within the
coherence time of each qubit
• Strategy 3: Reduce communication and use

reliable routing paths, avoiding bad gates
• Full stack compiler targeted for a real QC

system IBMQ16

Program
operations

Hardware Qubits

Compilation
Overview

Experiments with both
SMT and Heuristic approaches

Application
LLVM IR

Machine Configuration
Daily Calibration Data

Optimization Objective,
Routing Policy, Solver
Choices

Compiler
Generate Configuration Constraints

Mapping
Constraints

Scheduling
Constraints

Routing
Constraints

Generate Data-Aware Constraints

Readout Error
Constraints

CNOT Time
Constraints

CNOT Error
Constraints

Solve Constrained Optimization

Qubit Mapping, Gate Scheduling and Routing

Executable OpenQASM Code Generation

Execute on real QC
hardware

Significant Boost in Program Success Rate

• Scaffold -> LLVM -> Z3 -> IBM 16-qubit Rueschlikon
• Each “run” is 8192 runs, with results a distribution.
• Geomean 2.9X improvement in measured success rate over industry standard IBM Qiskit

compiler
• Some benchmarks up to 18X

• Up to 9.2X over noise-unaware optimized baseline.
• Improvements because of optimal qubit movement, usage of best CNOTs and qubit

readout units.
[Murali et al. ASPLOS 2019]

Quantum Compilation and Optimization

Mapping to Qubits Mitigating noise and calibration
penalties

Balancing technology tailoring and
portability Gate Set Selection and Optimization

NISQ Chapter 1:
Compilation and

optimization

Prakash Murali et al. ASPLOS’19. https://doi.org/10.1145/3297858.3304075
Prakash Murali, et al. ISCA 2019. https://doi.org/10.1145/3307650.3322273

Ali JavadiAbhari et al. CF 2014. https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf
P. Murali, et al, ISCA 2020. https://ieeexplore.ieee.org/abstract/document/9138945

…

https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3307650.3322273
https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf
https://ieeexplore.ieee.org/abstract/document/9138945

Instruction Set Design for NISQ Executions
• ISA choices affect the instruction count and fidelity of QC programs

• ISA choices also affect calibration costs
•More gate types in the ISA => Higher calibration cost => Less time available for application
computations

• Our work is the first to study the expressivity vs. calibration tradeoff in QC
•Similar to RISC vs. CISC choices in classical computer architecture

Quantum
Volume Unitary

With CZ

With √ISWAP

Lingling Lao*, Prakash Murali*, Margaret Martonosi, Dan Browne, Designing Calibration and Expressivity-Efficient Instruction Sets for Quantum Computing, ISCA 2021

Instruction sets with continuous two-qubit gates
Rigetti: 𝑋𝑌(𝜃), Google: 𝑓𝑆𝑖𝑚(𝜃, ∅),
ETH: 𝐶𝑃𝐻𝐴𝑆𝐸(𝜃)

Instruction sets with a single type of two-qubit gate
IBM (CNOT), early Rigetti and Google’s systems (CZ)
Application: Too restrictive, increases instruction count
Hardware: Easy to calibrate (<= 1 hour per day of calibration time on current systems)

Application: Very expressive, lower instruction count
Hardware: Difficult to calibrate a large number of gate types

Research Questions: Is there an ISA which is highly expressive for applications and easy
to calibrate? Will a small number of two-qubit gate types provide sufficient expressivity
for NISQ applications? What are the calibration overheads of such an instruction set?
Example: 𝑓𝑆𝑖𝑚(𝜋/2, 𝜋/6), 𝑓𝑆𝑖𝑚(𝜋/4,0), 𝑓𝑆𝑖𝑚(0, 𝜋), 𝑓𝑆𝑖𝑚(𝜋/2,0)

Result: Use ISAs with 4-8 types of two-qubit
gates
• Method: Configurable toolflow to study ISA choices using

realistic noise simulations of Rigetti and Google systems.
• Use 4-8 gate types to improve expressivity, fidelity:

• offers 1.5-2X reduction in instruction counts and fidelity,
compared to a single gate type

• near-optimal instruction counts and fidelity, compared to
a fully continuous gate set

• Diminishing returns in fidelity after 8+ types

• Tradeoff in calibration time:
• 4-8X higher calibration time compared to a single gate

type, but still practical on current systems
• Two orders of magnitude lesser overhead than a

continuous gate set

• More details on toolflow, application suite, calibration model,
noise variations across gate types in the paper.

QV Instruction count vs. Gate type
Choose gate types based on application +

gate set characterization

This talk: Some examples and opportunities
from each “NISQ Chapter”

Quantum
Compilation and

Optimization

Benchmarking
and Co-Design

Modularity and
Abstraction

NISQ Chapter 2: Benchmarking and Co-Design

Designing benchmark suites and
quantum program profiles

[Supermarq]

Co-design for quantum chemistry
applications [max-commute-tsp;

simultaneous measurement]

C2QA XCite ARQUIN: Cross-layer co-
design for superconducting QC

Divide and conquer cross-layer
strategies

NISQ Chapter 2:
Benchmarking and

Co-Design

Teague Tomesh et al. HPCA ’22 https://arxiv.org/abs/2202.11045
Teague Tomesh, et al. ICRC 2021. https://mrmgroup.cs.princeton.edu/papers/tomesh-term-grouping.pdf

James Ang et al. ACM TQC 2024. https://dl.acm.org/doi/pdf/10.1145/3674151

https://arxiv.org/abs/2202.11045
https://mrmgroup.cs.princeton.edu/papers/tomesh-term-grouping.pdf
https://dl.acm.org/doi/pdf/10.1145/3674151

𝐻 =
𝛼!,! 𝛼!,#
𝛼#,! 𝛼#,#

𝐻 =
𝛼!,! ⋯ 𝛼!,#!	
⋮ ⋱ ⋮

𝛼#! ,! ⋯ 𝛼#! ,#!

Hamiltonian describes
allowed energy levels

of the system

Figure: Reiher et al. 2017, DOI:10.1073/pnas.1619152114

Goal: Molecular
properties of

drugs and
materials

Difficult:
Exponential
state space

requirements

Use a QC to
simulate a
quantum
system!

Increasing
complexity

Example: Co-Design for Quantum Chemistry Apps

• Trotterization ⇨ to simulate the system on a QC, we break the evolution up into discretized timesteps

Algorithmic error

𝑟 = #𝑡 Δ𝑡

𝑟 = 1	 → 𝜀!

𝑟 = 2	 → 𝜀" < 𝜀!

𝑟 = 𝑅	 → 𝜀# < 𝜀#$!

…

…

Physical error in
NISQ systems

Balancing algorithmic and physical error

Hamiltonian simulation
applications suffer from

algorithmic and physical errors.
Is there a way to simultaneously

minimize both?

“Trotter number”

• Physical error ⇨ Gates in real QC systems inject further error due to insufficient control fidelity

• The QC sequentially simulates each Pauli term
• The compiler selects an ordering

• Not all orderings equal

Lexicographic (LEX):

Magnitude (MAG):

𝐻 = 5	𝐼𝐼𝐼𝑌 + 7	𝐼𝑌𝑋𝑋 + 6	𝑌𝐼𝐼𝑌 + 9	𝑌𝑋𝑌𝑋 + 4	𝑌𝑌𝐼𝑌 + 8	𝑌𝑌𝑌𝑌 + 3	𝑍𝐼𝐼𝐼 + 2	𝑍𝐼𝑍𝐼 + 𝑍𝑍𝑍𝑍

𝐻 = 9	𝑌𝑋𝑌𝑋 + 8	𝑌𝑌𝑌𝑌 + 7	𝐼𝑌𝑋𝑋 + 6	𝑌𝐼𝐼𝑌 + 5	𝐼𝐼𝐼𝑌 + 4	𝑌𝑌𝐼𝑌 + 3	𝑍𝐼𝐼𝐼 + 2	𝑍𝐼𝑍𝐼 + 𝑍𝑍𝑍𝑍

Max-Commute-TSP (MCTSP)
1. Group commuting terms
2. Order terms within each group
3. Clique-clique ordering heuristic

• Tranter et al. J. Chem. Theory Comput. 2018, 14, 11, 5617–5630 (mitigates physical errors well)

• Tranter et al. Entropy. 2019, 21(12):1218 (mitigates algorithmic errors well)

Our solution: Full-stack co-design ->
Commutation-aware compilation

… …

Optimized Quantum Program Execution Ordering to Mitigate Errors in
Simulations of Quantum Systems. T Tomesh, et al.

2021 International Conference on Rebooting Computing. Best Paper.

https://scholar.google.com/scholar?oi=bibs&cluster=12697299836604280126&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=12697299836604280126&btnI=1&hl=en

• Average over 79 benchmark molecules
• Diamond distance measures algorithmic error:

Simulation steps:
1. First, increase the Trotter number r until the

error reaches a threshold 𝜖 < 0.1
2. Then, compute the number of CNOTs in the

final quantum circuit.

quantum channels

Mitigating both algorithmic and physical errors results in 40% fewer CNOTs than LEX and MAG

Noiseless simulation reveals the impact of codesign

22

C
N

O
Ts

 (l
ow

er
 is

 b
et

te
r)

Experimental steps:
1. Prepare an initial state
2. Generate an HS circuit with a particular ordering
3. Measure the Hellinger infidelity (1 − 𝐻!)

probability distributions

Mitigating algorithmic errors is crucial even in the NISQ regime

Real HW executions show further importance of
NISQ codesign

23

(lower is better)

Takeaways: Application-specific co-design
• Cross-layer focus enable coordinated mitigation of both algorithmic and

physical errors
• Compiler benefits remain relevant even in the fault-tolerant era
• Similar techniques can be adapted to other applications

$ O (N^ 3) $ Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians.
P Gokhale, et al. IEEE Transactions on Quantum Engineering, 2020

Optimization of simultaneous measurement for variational quantum eigensolver applications
P Gokhale, et al.

2020 IEEE International Conference on Quantum Computing and Engineering. Best Paper.

Divide and Conquer for Combinatorial Optimization and Distributed Quantum Computation
T. Tomesh, et al. 2023 IEEE International Conference on Quantum Computing and Engineering

(QCE), Bellevue, WA, USA, 2023

https://scholar.google.com/scholar?oi=bibs&cluster=5441920167033317573&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=15814204672437211178&btnI=1&hl=en

This talk: Some examples and opportunities
from each “NISQ Chapter”

Quantum
Compilation and

Optimization

Benchmarking
and Co-Design

Modularity and
Abstraction

NISQ Chapter 3: Towards Scale

HetArch: Heterogeneous and
Modular QC design libraries Distributed Quantum Computation

Hybrid Classical/Quantum
Computing Circuit Cutting and Circuit Knitting

NISQ Chapter 3:
Modularity and

Abstraction

Sam Stein et al. MICRO ’23 https://dl.acm.org/doi/abs/10.1145/3613424.3614300
Wei Tang, et al. ASPLOS 2021. https://dl.acm.org/doi/abs/10.1145/3445814.3446758

Wei Tang et al. ArXiv 2022. https://arxiv.org/abs/2207.00933

https://dl.acm.org/doi/abs/10.1145/3613424.3614300
https://dl.acm.org/doi/abs/10.1145/3445814.3446758
https://arxiv.org/abs/2207.00933

From Sea-of-
qubit

architectures to
differentiated
functionality

Heterogeneity and Modularity -> Scale

Specialized modules
can streamline
mapping from
application to

hardware, but…

Unconstrained
specialization
can be worse
than sea-of-

qubits

We’ve faced this before!
Can we learn from the

Mead & Conway approach?

Our Solution:
HetArch

• A methodology and toolbox for the systematic design and simulation of
modular, heterogeneous quantum microarchitectures
• Hierarchical hardware synthesis method to decompose high-level subroutines
• Design rules to systematically design quantum standard cells
• Design space exploration framework that efficiently simulates performance

Samuel Stein, et al.. 2023. MICRO 23. https://doi.org/10.1145/3613424.3614300

Our Solution:
HetArch

• A methodology and toolbox for the systematic design and simulation of
modular, heterogeneous quantum microarchitectures
• Hierarchical hardware synthesis method to decompose high-level subroutines
• Design rules to systematically design quantum standard cells
• Design space exploration framework that efficiently simulates performance

Execute subroutines

Execute operations

Qubits

Samuel Stein, et al.. 2023. MICRO 23. https://doi.org/10.1145/3613424.3614300

HetArch Devices

• Compute desires high connectivity and fast, high-fidelity gates
• Planar transmon

• Storage desires long coherence times and multi-qubit capacity
• Multimode resonator

• HetArch’s Devices Abstraction:
• Abstracts away actual implementation technology
• But retains basic, simplifying distinction between “compute” and “storage” functionality
• Aimed at central tradeoff between long coherence time and high connectivity

Standard Cells & Design Rules
• HetArch Standard Cells = Functional units composed of devices, optimized for

particular operation(s), complying by architectural design rules independent of
device implementation technology
• Example Design Rules

• Compute devices should be connected to at most 4 other devices.
• Storage devices should be connected to exactly 1 compute device to maximize coherence.
• …

• Standard Cells are pre-characterized by detailed density matrix simulation →
time, fidelity of operation

“Parity Check Cell” “Universal Stabilizer Cell”

More in the Paper
• Use multi-level modular abstractions to

project and optimize behavior of complex
units without requiring full device-level
simulation
• Demonstrate on Code Teleportation and

other examples

NISQ Chapter 3: Towards Scale

HetArch: Heterogeneous and
Modular QC design libraries Distributed Quantum Computation

Hybrid Classical/Quantum
Computing Circuit Cutting and Circuit Knitting

NISQ Chapter 3:
Modularity and

Abstraction

Sam Stein et al. MICRO ’23 https://dl.acm.org/doi/abs/10.1145/3613424.3614300
Wei Tang, et al. ASPLOS 2021. https://dl.acm.org/doi/abs/10.1145/3445814.3446758

Wei Tang et al. ArXiv 2022. https://arxiv.org/abs/2207.00933

https://dl.acm.org/doi/abs/10.1145/3613424.3614300
https://dl.acm.org/doi/abs/10.1145/3445814.3446758
https://arxiv.org/abs/2207.00933

Modularity and Scale: Cut QC Circuits to fit onto
NISQ Platforms
• Goal: Make use of NISQ devices despite

the noise and capacity challenges.
• Approach: Cut QC circuits into sub-parts

that fit, and sew together results
classically afterwards
• Challenge: Classical reconstruction is

time and resource-intensive!
• Our Work: First practical circuit cutting

toolchain that beats classical simulation
in runtime, and NISQ in fidelity and
circuit sizes.

Cut Selection: Cut large
problem into smaller sub-

problems

Quantum Execution: Run on
one or more QPUs

Classical Reconstruction:
Combine sub-results with

classical computing

CutQC: Combining Classical and Quantum
Computation to run QC algorithms at larger scale

• CutQC: Cut + Quantum Processing + Classical Processing
1. Select Cut Points: Mixed Integer Programming (MIP) automatically locates efficient cut

points in large QC algorithm circuits and splits into small subcircuits runnable on NISQ
platforms.

2. Run QC subcircuits: Small NISQ platforms evaluate the subcircuits.
3. Reconstruct: Classical reconstruction approaches sew subcircuits back together, produce

the uncut output in full definition (FD) or dynamically adjust the definition (DD).
• Our work is the first practical circuit cutting toolchain that beats classical

simulation in runtime, and NISQ in fidelity and circuit sizes.

0 , 1 , + , |𝑖⟩

𝐼, 𝑋, 𝑌

Example: Cut one edge to split a 5-qubit circuit into two smaller
(3-qubit each) subcircuits.

Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, Margaret
Martonosi, CutQC: Using Small Quantum Computers for Large

Quantum Circuit Evaluations, ASPLOS 2021

Result: Runtime Improvement vs. Simulation
• 60X-8600X speedup over the classical

simulation baseline (IBM Qiskit)

• Insights:
• Densely connected circuits are harder to cut.
• Larger quantum circuits generally require

more postprocessing.
• Having larger quantum computers generally

improves the runtime but has diminishing
returns. E.g. 5*7 supremacy admits the same
cuts on 20-, and 25-q QC.

AQFT
Supremacy Adder

Classical Simulation
BV
Grover
HWEA

To Scale Further…
• Dynamic definition: Zoom in on states of particular interest, to reduce

reconstruction required
• Parallel GPUs: See our poster here!
• Tensor Optimizations: Exploit modern GPUs and tensor contraction

optimizations to further reduce reconstruction complexity and time

Find open source Github, full paper, full talk here:
https://www.wtang.page

https://www.wtang.page/

What’s next?

Quantum
Compilation and

Optimization

Benchmarking
and Co-Design

Modularity and
Abstraction

OS

High-Level Languages

Compiler

Architecture

VLSI Circuits

Semiconductor transistors

Algorithms Algorithms

Qubit implementations

High-level QC Languages.
Compilers.

Optimization.
Error Correcting Codes

Orchestrate classical gate
control,

Orchestrate qubit motion
and manipulation.

~1950’s Classical Computing

Vacuum Tubes, Relay Circuits

Assembly Language

Algorithms

Quantum Systems Today

Quantum Systems

Modular hardware blocks:
Gates, registers

Today’s Classical Computing

Mind the Gaps!

41

Capability Gap:
Algorithms to

Devices

Topical Gap: Between
Algorithms and

Devices is a world of
QSE research

With thanks to my amazing co-authors
• Wei Tang*

• Final Year Princeton CS PhD student
• Circuit cutting and optimizations
• Impact into IBM and Amazon systems

• Teague Tomesh, now at Infleqtion
• Princeton CS PhD 2023
• Quantum algorithms and benchmarking for NISQ advantage
• Now at Infleqtion

• Prakash Murali, now at University of Cambridge, UK
• Princeton CS PhD 2021
• Sequence of papers on gate selection and optimizations across superconducting and trapped ion implementations
• ACM SIGARCH/IEEE CS TCCA Outstanding Dissertation Award (2022)

• Ali Javadi-Abhari, now at IBM Q
• Princeton EE PhD 2017
• Lead on Scaffold QC Compiler/PL work + resource estimation and optimization

• Esin Tureci
• Associate Research Scholar at Princeton University

• Chuck Garcia, Summer Undergraduate Research Visitor from University of Texas, Austin*
• Ellie Vogel, Summer Undergraduate Research Visitor from Duke University*

* See our poster next!

