Mind the Gap!

Challenges and Opportunities in
Closing the Algorithms-to-Devices Gap
in Quantum Computing

Margaret Martonosi
Dept. of Computer Science
Princeton University

1 VE'é‘ NOV 1
TE TAM .
A ER AL, Work by Princeton Group Members and Alums:

Chuck Garcia
Prakash Murali
Wei Tang
Teague Tomesh
Esin Tureci

Ellie Vogel

An Analogy: Classical Computing in 1950

~1950’s Classical Computing

.

Algorithms

1 'r'llllf

% 18 Fios Sy T

_ TR) T T
“ %iruvainy e B (TIERT

P A / ,l.!l,‘ 1t 'l'l
. & f h NANEILIR LIS ARRLLLY o 3 |
RN ¥ »

SN N T ' s R B LI |
1 :
' retqeeyr 4!} ! ' LA |
| | ‘

!
MAREERTT

Assembly Language
-

fov g,
Th11) .""'..‘ '

Vacuum Tubes, Relay Circuits

Alan Turing in 1950:
“Can Machines Think?”

A. M. Turing (1950) Computing Machinery and Intelligence. Mind 49: 433-460.

COMPUTING MACHINERY AND INTELLIGENCE
By A. M. Turing
1. The Imitation Game

I propose to consider the question, "Can machines think?" This should begin with
definitions of the meaning of the terms "machine" and "think." The definitions might be
framed so as to reflect so far as possible the normal use of the words, but this attitude is
dangerous, If the meaning of the words "machine" and "think" are to be found by
examining how they are commonly used it is difficult to escape the conclusion that the
meaning and the answer to the question, "Can machines think?" is to be sought in a
statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a
definition I shall replace the question by another, which is closely related to it and is
expressed in relatively unambiguous words.

Classical Computing Today: Massive Scaling
Achieved through Innovation and Smart Abstraction

~1950’s Classical Computing) , _
Today’s Classical Computing

Algorithms

Algorithms

High-Level Languages

Compiler (ON)

Architecture

Modular hardware blocks:
Gates, registers

Assembly Language VLSI Circuits

Semiconductor transistors

Vacuum Tubes, Relay Circuits

Quantum Systems Today

~1950’s Classical Computing) , _
Today’s Classical Computing Quantum Systems

Algorithms Algorithms Algorithms
High-Level Languages

Compiler (ON)

How best

Architecture

Modular hardware blocks: to f| I | ?

Gates, registers

Assembly Language VLSI Circuits

Vacuum Tubes, Relay Circuits

Semiconductor transistors Qubit implementations

Algorithms to Machines Gap: Status Check

1000000

I Grovers Algorithm

100000 4 (Database search)
I) . More

Shor’s Factoring Alg. (Crypto)
10000 Work
#Qubits A Quantum Sim, T Needed!
1000 Q Chem, QAOA

100 I
10 '

1
1995 2005 2015 2025 2030 2035

Year 1 ']
NISQ

NISQ Era shows
distinct “chapters” of
evolution

1. Compilation and
Mapping

2. Co-Design

3. Bridging NISQ and
Fault-tolerance via

Modularity and
Abstraction

This talk: Some examples and opportunities
from each “NISQ Chapter”

DU Benchmarking Modularity and

and Co-Design Abstraction

Compilation and
Optimization

Quantum Compilation and Optimization

tion and

Compila
-Optimi_

Prakash Murali et al. ASPLOS’19. https://doi.org/10.1145/3297858.3304075

Prakash Murali, et al. ISCA 2019. https://doi.org/10.1145/3307650.3322273

Ali JavadiAbhari et al. CF 2014. https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf

P. Murali, et al, ISCA 2020. https://ieeexplore.ieee.org/abstract/document/9138945

https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3307650.3322273
https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf
https://ieeexplore.ieee.org/abstract/document/9138945

Our Work: Noise-Adaptive Compilation

* Compile once-per-execution using noise
characterization data

* Strategy 1: Place program qubits onto
hardware qubits based on operation error
rates

* Strategy 2: Reduce decoherence errors by
scheduling gates to finish within the
coherence time of each qubit

* Strategy 3: Reduce communication and use
reliable routing paths, avoiding bad gates

* Full stack compiler targeted for a real QC
system IBMQ16

/ Program
operations

Hardware Qubits

Compilation
Overview

Application
LLVM IR

Machine Configuration
Daily Calibration Data

Optimization Objective,
Routing Policy, Solver
Choices

@

R,

-

Compiler \
\
Generate Configuration Constraints

Mapping Scheduling Routing
Constraints Constraints Constraints
S %

~~

Generate Data-Aware Constraints

/
Readout Error CNOT Time CNOT Error
\§ Constraints Constraints Constraints

Solve Constrained Optimization Experiments with both

Qubit Mapping, Gate Scheduling and Routing] SMT and Heuristic approaches

U

-

\Qxecutable OpenQASM Code Generation]

@ Execute on real QC
hardware

Significant Boost in Program Success Rate

B Qiskit B T-SMT* B RSMT* w =05

o o o
= o o

Success Rate

=
o

=
o

BV4 BV6 BV8 HS2 HS4 HS6 Toffoli Fredkin QFT
Benchmarks

 Scaffold -> LLVM ->Z3 -> IBM 16-qubit Rueschlikon
e Each “run” is 8192 runs, with results a distribution.
* Geomean 2.9X improvement in measured success rate over industry standard IBM Qiskit

compiler
e Some benchmarks up to 18X

* Up to 9.2X over noise-unaware optimized baseline.
* Improvements because of optimal qubit movement, usage of best CNOTs and qubit
readout units.
[Murali et al. ASPLOS 2019]

Quantum Compilation and Optimization

NISQ Chapter 1:
Compilation and

optimization

Prakash Murali et al. ASPLOS’19. https://doi.org/10.1145/3297858.3304075

Prakash Murali, et al. ISCA 2019. https://doi.org/10.1145/3307650.3322273

Ali JavadiAbhari et al. CF 2014. https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf

P. Murali, et al, ISCA 2020. https://ieeexplore.ieee.org/abstract/document/9138945

https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3307650.3322273
https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf
https://ieeexplore.ieee.org/abstract/document/9138945

Instruction Set Desigh for NISQ Executions

* |ISA choices affect the instruction count and fidelity of QC programs

0.3194+0.395: —0.379+0.039: —0.098 +0.2417 —0.058 — 0.7242

90 Ay [| —0.357+0.610i 0.350+0.177i 0.332 +0.437i —0.172+0.116
Quantum) q1 SUM)|_=| _0.460 + 0.026i —0.474—0.205i 0.483 — 0.408i —0.305 — 0.132i
Volume Unitary —0.131 —0.058 0.617+0.228 0.022 — 0.477i 0.004 — 0.563i

. go -{U3(3.89,1.83,4.12) |
With CZ 01 [U5(3.73,2.65,5.57)

CZ

—{U3(1.35,5.19, 2.46) || oz —|U3(2.26,4.58,0.93)::] oz [::U;;(1.22,4.94, 2.74)|-

—{U3(1.25,4.33,3.93) }— ~ —{U3(4.98,1.99,0.75) Us(3.26,7.08, 2.37) |-

_ g0 —|U3(6.79,5.82,3.79) _ Us(1.97,3.77,5.26) _ Us(2.91,6.93, 7.24) -
With VISWAP 5341, 5.02,2.80) | VISWAP EU;,(1.45,4.94,6.05) VISWAP | 77 (2.76,5.87, 1.54) |

* |ISA choices also affect calibration costs

*More gate types in the ISA => Higher calibration cost => Less time available for application
computations

e Our work is the first to study the expressivity vs. calibration tradeoff in QC
Similar to RISC vs. CISC choices in classical computer architecture

Lingling Lao*, Prakash Murali*, Margaret Martonosi, Dan Browne, Designing Calibration and Expressivity-Efficient Instruction Sets for Quantum Computing, ISCA 2021

Instruction sets with a single type of two-qubit gate 1 0 0 0
IBM (CNOT), early Rigetti and Google’s systems (CZ) az— 10 1 0 0
Application: Too restrictive, increases instruction count 8 8 (1) _01

Hardware: Easy to calibrate (<= 1 hour per day of calibration time on current systems)

Research Questions: Is there an ISA which is highly expressive for applications and easy
to calibrate? Will a small number of two-qubit gate types provide sufficient expressivity
for NISQ applications? What are the calibration overheads of such an instruction set?

Example: fSim(rt/2,m/6), fSim(m/4,0), fSim(0,), fSim(m/2,0)

Instruction sets with continuous two-qubit gates

Rigetti: XY (0), Google: fSim(6, ©), (1) (%/2) N ?0/2) 8
ETH: CPHASE (0) XYO) = | 0 iin6/2) cos(8/2) 0
0 1

Application: Very expressive, lower instruction count
Hardware: Difficult to calibrate a large number of gate types

Result: Use ISAs with 4-8 types of two-qubit
gates

* Method: Configurable toolflow to study ISA choices using SR S7 -.-....IEWAP4,04_§,

realistic noise simulations of Rigetti and Google systems. °:.° :oi] S

* Use 4-8 gate types to improve expressivity, fidelity: 5 S EE E 3.5 %

» offers 1.5-2X reduction in instruction counts and fidelity, g === = S

compared to a single gate type %, i EEE E 3.0§.

* near-optimal instruction counts and fidelity, comparedto & - T i g

a fully continuous gate set V) < 25%

* Diminishing returns in fidelity after 8+ types g ~ m- g

* Tradeoff in calibration time: o 0 2 4 6 8 1012 12 16 18 2-03?:)
» 4-8X higher calibration time compared to a single gate iISWAP-like angle 6 (x r/36)

type, but still practical on current systems QV Instruction count vs. Gate type

* Two orders of magnitude lesser overhead than a Choose gate types based on application +
continuous gate set gate set characterization

More details on toolflow, application suite, calibration model,
noise variations across gate types in the paper.

This talk: Some examples and opportunities
from each “NISQ Chapter”

DU Benchmarking Modularity and

and Co-Design Abstraction

Compilation and
Optimization

NISQ Chapter 2: Benchmarking and Co-Design

Benchmarking and

CO-D_

Teague Tomesh et al. HPCA ’22 https://arxiv.org/abs/2202.11045

Teague Tomesh, et al. ICRC 2021. https://mrmgroup.cs.princeton.edu/papers/tomesh-term-grouping.pdf

James Ang et al. ACM TQC 2024. https://dl.acm.org/doi/pdf/10.1145/3674151

https://arxiv.org/abs/2202.11045
https://mrmgroup.cs.princeton.edu/papers/tomesh-term-grouping.pdf
https://dl.acm.org/doi/pdf/10.1145/3674151

Example: Co-Designh for Quantum Chemistry Apps

Goal: Molecular Difficult: Usea QCto

properties of Exponential simulate a
drugs and state space guantum
materials requirements system!

o . al,l a1,2 Increasing
H = complexity

P T]

| Hamiltonian describes i
i allowed energy levels
! of the system !

Clzn'l e azn,zn

Figure: Reiher et al. 2017, DOI:10.1073/pnas.1619152114

Balancing algorithmic and physical error

* Trotterization = to simulate the system on a QC, we break the evolution up into discretized timesteps

* Physical error = Gates in real QC systems inject further error due to insufficient control fidelity

—

e—ZHt ~ 6—-7:61P1At6}c'2}32At o e—iCNPNAt |t/At + O(tAt) \

/ ' ‘\ Algorithmic error

_t
Physical error in Trotter number

r=1-¢g

4./

NISQ systems \

Hamiltonian simulation
applications suffer from
algorithmic and physical errors.
Is there a way to simultaneously
minimize both?

r=2 - & <&

=R - Ep < ER-1

Our solution: Full-stack co-design ->
Commutation-aware compilation

* The QC sequentially simulates each Pauli term

* The compiler selects an ordering
* Not all orderings equal

Lexicographic (LEX): H=511Y +7IYXX+6YIIY +9YXYX+4YYIY +8YYYY+3ZIII+2ZIZI +ZZZZ
* Tranter et al. J. Chem. Theory Comput. 2018, 14, 11, 5617-5630 (mitigates physical errors well)

Magnitude (MAG): H =9YXYX+8YYYY+7IYXX+6YIIY+5I1IIY+4YYIY+3ZII+2ZIZI +7ZZZZ
* Tranter et al. Entropy. 2019, 21(12):1218 (mitigates algorithmic errors well)

Max-Commute-TSP (MCTSP)
1. Group commuting terms
2. Order terms within each group
Optimized Quantum Program Execution Ordering to Mitigate Errors in

3. Clique—cliq ue ordering heuristic Simulations of Quantum Systems. T Tomesh, et al.

2021 International Conference on Rebooting Computing. Best Paper.

https://scholar.google.com/scholar?oi=bibs&cluster=12697299836604280126&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=12697299836604280126&btnI=1&hl=en

Noiseless simulation reveals the impact of codesign

Average over 79 benchmark molecules
Diamond distance measures algorithmic error:

do/(€, F) =€ = 1€ = Fllo
= max]|(€ © L)p - (F & Dol

quantum channels

Simulation steps:

1.

2

First, increase the Trotter number r until the
error reaches a threshold € < 0.1

. Then, compute the number of CNOTs in the

final quantum circuit.

350 1

(s
)
)

[\
n
<o

CNOTs (lower is better)

i
o

Average gate cost

—o— MCTSP (this work)
| =—e— Random

[

N

O
1

ja
-

—eo— LEX
MAG

DepleteGroups

0.6

Mitigating both algorithmic and physical errors results in 40% fewer CNOTs than LEX and MAG

22

Real HW executions show further importance of
NISQ codesign

Experimental steps:
1. Prepare an initial state
2. Generate an HS circuit with a particular ordering

3. Measure the Hellinger infidelity (1 — Hp) (lower is better)
Molecule | Diamond Dist. (€) 2-qubit gates Hellinger Inf. (%)

1 lex, mag, mctsp lex, mag, mctsp lex, mag, mgtsp

CoHy 2.9, 1.8e-3, 1.8e-3 55, 49, 41 75.9, 55.2,/53.8

Hp(P,Q) = —2|\\/f - \/@H2 Cls 1.9, 1.4e-4, 1.4e-4 47, 53, 37 62.2, 56.6[54.2
CaH> 1.9, 1.3e-3, 1.3e-3 47, 53, 37 62.4, 57.2% 57.7

probability distributions Fy 1.1, 3.0e-3, 3.0e-3 /47, 53, 37 71.0, 56.7} 52.2

No 1.7, 1.2e-3, 1.2e- 47, 53, 37 61.9, 54.6\ 54.1

O2 3.1, 4.1e-3, 44e-3 41, 41, 27 59.6, 59.7,\46.5

> s

Mitigating algorithmic errors is crucial even in the NISQ regime

Takeaways: Application-specific co-design

* Cross-layer focus enable coordinated mitigation of both algorithmic and
physical errors

* Compiler benefits remain relevant even in the fault-tolerant era

* Similar techniques can be adapted to other applications

Optimization of simultaneous measurement for variational guantum eigensolver applications

P Gokhale, et al.
2020 IEEE International Conference on Quantum Computing and Engineering. Best Paper.

S O (N” 3) S Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians.
P Gokhale, et al. IEEE Transactions on Quantum Engineering, 2020

Divide and Conquer for Combinatorial Optimization and Distributed Quantum Computation
T. Tomesh, et al. 2023 IEEE International Conference on Quantum Computing and Engineering

(QCE), Bellevue, WA, USA, 2023

https://scholar.google.com/scholar?oi=bibs&cluster=5441920167033317573&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=15814204672437211178&btnI=1&hl=en

This talk: Some examples and opportunities
from each “NISQ Chapter”

DU Benchmarking Modularity and

and Co-Design Abstraction

Compilation and
Optimization

NISQ Chapter 3: Towards Scale

Modularity and

Sam Stein et al. MICRO ’23 https://dl.acm.org/doi/abs/10.1145/3613424.3614300

Wei Tang, et al. ASPLOS 2021. https://dl.acm.org/doi/abs/10.1145/3445814.3446758

Wei Tang et al. ArXiv 2022. https://arxiv.org/abs/2207.00933

https://dl.acm.org/doi/abs/10.1145/3613424.3614300
https://dl.acm.org/doi/abs/10.1145/3445814.3446758
https://arxiv.org/abs/2207.00933

From Sea-of-
qubit
architectures to

differentiated
functionality

ibm_seattle

Your upcoming

reservations

Calibration data

Qubit:
T1 (us)

Median 86.14
.

ECR error

Median 2.139%e
it

-2
 —

Exploratory

iew

506 mm 307 mu 308

112 mm113

146 147

165

255 mm 256 =
268
289 mm 290 mm 291 mm 292 mm 293 mm 394
|
303
325 326
333

345m346

8 days ago

Heterogeneity and Modularity -> Scale
B LS -

CARVER MEAD « LYNN CONWAY

Specialized modules
can streamline
mapping from
application to

hardware, but...

o=
=
=

=

IR

Unconstrained
specialization
can be worse
than sea-of-
qubits

We’ve faced this before!
Can we learn from the
Mead & Conway approach?

Samuel Stein, et al.. 2023. MICRO 23. https://doi.org/10.1145/3613424.3614300

Reg Reg
Input Distil Output
Reg Reg

Entanglement Distillation

Our Solution:
HetArCh Module / Sub-module

Compute devices, such as
transmon qubits, provide
fast and high-fidelity

gates

7’
4
4
’ v
' 4
7
- 4 ’
/,, / l'
/, !
il | Storage devices, such as
Device ’ multi-mode resonators,
are resilient to
Compute Storage decoherence

Standard Cell

* A methodology and toolbox for the systematic design and simulation of
modular, heterogeneous quantum microarchitectures
* Hierarchical hardware synthesis method to decompose high-level subroutines
* Design rules to systematically design quantum standard cells
* Design space exploration framework that efficiently simulates performance

Samuel Stein, et al.. 2023. MICRO 23. https://doi.org/10.1145/3613424.3614300

Reg Reg
Input Distil Output
Reg Reg

Entanglement Distillation

Our Solution:
HetArCh Module / Sub-module

Execute subroutines

Compute devices, such as
transmon qubits, provide
fast and high-fidelity

gates

, I
7’ 1
’ 1
,,’/ 1 Storage devices, such as
Device ’ multi-mode resonators,
are resilient to
Qubit

Standard Cell
Execute operations

* A methodology and toolbox for the systematic design and simulation of
modular, heterogeneous quantum microarchitectures
* Hierarchical hardware synthesis method to decompose high-level subroutines
* Design rules to systematically design quantum standard cells
* Design space exploration framework that efficiently simulates performance

HetArch Devices

Device T/T, Readout Gate Gate error Connectivity Control Footprint Notes
time set (time) Overhead
Fixed frequency 300us/550us 1us Arb. le-3 (100ns) 4 1 charge 2 mm x 2 mm e.g. Transmon
qubit [15, 82] 1Q/2Q 1 readout
Flux tunable qubit [83,84] 800us/200us 1us Arb. le-3 (100ns) 4 1 charge 2 mm x 2 mm e.g. Fluxonium
1Q/2Q 1 flux

1 readout
3D quantum 25ms / 30ms N/A SWAP le-2 (1us) 1 N/A 50 mm x 0.5 Requires 2D/3D
memory [85,86] mm X 1 mm integration
3D multimode resonator 2ms / 2.5ms N/A SWAP le-2 (400ns) 1 N/A 100 mm x 100 Requires 2D/3D
(10 modes) [19] mm x 10 mm integration
Future on-chip multimode ~ 1ms/ Ims N/A SWAP le-2 (100ns) 1 N/A 5 mm x 5 mm No demonstration

resonator [19, 20, 87]

* Compute desires high connectivity and fast, high-fidelity gates
* Planar transmon

* Storage desires long coherence times and multi-qubit capacity
* Multimode resonator

* HetArch’s Devices Abstraction:
* Abstracts away actual implementation technology
* But retains basic, simplifying distinction between “compute” and “storage” functionality
* Aimed at central tradeoff between long coherence time and high connectivity

Standard Cells & Design Rules

* HetArch Standard Cells = Functional units composed of devices, optimized for
particular operation(s), complying by architectural design rules independent of

device implementation technology

* Example Design Rules
* Compute devices should be connected to at most 4 other devices.
 Storage devices should be connected to exactly 1 compute device to maximize coherence.

 Standard Cells are pre-characterized by detailed density matrix simulation -
time, fidelity of operation

[ParCheck]

USC
“Parity Check Cell” “Universal Stabilizer Cell”

More in the Paper

e Use multi-level modular abstractions to
project and optimize behavior of complex
units without requiring full device-level
simulation

 Demonstrate on Code Teleportation and
other examples

@antum Hardware-Software Stah

NISQ Chapter 3: Towards Scale

NISQ Chapter 3:
Modularity and

Abstraction

Sam Stein et al. MICRO ’23 https://dl.acm.org/doi/abs/10.1145/3613424.3614300

Wei Tang, et al. ASPLOS 2021. https://dl.acm.org/doi/abs/10.1145/3445814.3446758

Wei Tang et al. ArXiv 2022. https://arxiv.org/abs/2207.00933

https://dl.acm.org/doi/abs/10.1145/3613424.3614300
https://dl.acm.org/doi/abs/10.1145/3445814.3446758
https://arxiv.org/abs/2207.00933

Modularity and Scale: Cut QC Circuits to fit onto
NISQ Platforms

* Goal: Make use of NISQ devices despite problem into smaller sub-
the noise and capacity challenges. problems

* Approach: Cut QC circuits into sub-parts
that fit, and sew together results
classically afterwards

Cut Selection: Cut large

Quantum Execution: Run on

* Challenge: Classical reconstruction is
one or more QPUs

time and resource-intensive!

* Our Work: First practical circuit cutting
toolchain that beats classical simulation

in runtime, and NISQ in fidelity and
circuit sizes. Classical Reconstruction:

Combine sub-results with
classical computing

CutQC: Combining Classical and Quantum
Computation to run QC algorithms at larger scale

subcirc1o 0)@ * Ry(7/2)
w:10) {A] :|—-—r subcircts 0) —[H]—s—{Ra/2)
a:10) {H] CCE] s . e L subcirotz 0 LXY
@:10) {HHTI——X
o -l - }»z:zz::zzf o i
q4:|0> subc,rc22 R 7r/2 }—v—{R(Tr/Z)

Example: Cut one edge to split a 5-qubit circuit into two smaller
(3-qubit each) subcircuits.

e CutQC: Cut + Quantum Processing + Classical Processing

1. Select Cut Points: Mixed Integer Programming (MIP) automatically locates efficient cut
points in large QC algorithm circuits and splits into small subcircuits runnable on NISQ
platforms.

2. Run QC subcircuits: Small NISQ platforms evaluate the subcircuits.

3. Reconstruct: Classical reconstruction approaches sew subcircuits back together, produce
the uncut output in full definition (FD) or dynamically adjust the definition (DD).

* Our work is the first practical circuit cutting toolchain that beats classical
simulation in runtime, and NISQ in fidelity and circuit sizes.

Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, Margaret
Martonosi, CutQC: Using Small Quantum Computers for Large

Quantum Circuit Evaluations, ASPLOS 2021

Result: Runtime Improvement vs. Simulation

—— BV —<— Supremacy —<— Adder
* 60X-8600X speedup over the classical e T T S
simulation baseline (IBM Qiskit) Y) O | B B
% 1034 1034
. ;E; 1 1 /(
* Insights: E 101 10
 Densely connected circuits are harder to cut. 7L 107
R . . . 11 15 20 26 34 16 21 26 30 35
Larger quantum circuits generally require o 20.0 QC Gt on 259 OC
more postprocessing. L5 105
* Having larger quantum computers generally 5 10°] ™ i
improves the runtime but has diminishing g Lot la /{
returns. E.g. 5*7 supremacy admits the same e
1071 1071
cuts on 20-, and 25-q QC.

21 25 28 31 35 26 28 30 33 35
Full circuit size Full circuit size

To Scale Further...

* Dynamic definition: Zoom in on states of particular interest, to reduce
reconstruction required

* Parallel GPUs: See our poster here!

* Tensor Optimizations: Exploit modern GPUs and tensor contraction
optimizations to further reduce reconstruction complexity and time

Find open source Github, full paper, full talk here:
https://www.wtang.page

https://www.wtang.page/

What’s next?

Quantum
Compilation and
Optimization

Benchmarking Modularity and

and Co-Design Abstraction

Quantum Systems Today

~1950’s Classical Computing Today’s Classical Computing Quantum Systems

Algorithms

Algorithms Algorithms

High-Level Languages High-level QC Languages.

Compiler oS Compilers.
‘ Optimization.
Architecture Error Correcting Codes
Orchestrate classical gate
Modular hardware blocks: control,

Gates, registers Orchestrate qubit motion

Assembly Language VLSI Circuits and manipulation.

Vacuum Tubes, Relay Circuits Semiconductor transistors Qubit implementations

Mind the Gaps!

1000000 .

100000 I Grovers Algorithm (Database search)

Shor's Factoring Alg. (Crypto
10000 oring Alg. (Crypto)

#Qubits 1000

1995 2005 2015 2025
Year

Capability Gap:

Algorithms to
Devices

Quantum Systems

Algorithms

High-level QC Languages.
Compilers.
Optimization.

Error Correcting Codes
Orchestrate classical gate
control,
Orchestrate qubit motion
and manipulation.

Qubit implementations

Topical Gap: Between
Algorithms and
Devices is a world of

QSE research

With thanks to my amazing co-authors

* Wei Tang*
* Final Year Princeton CS PhD student
* Circuit cutting and optimizations
* Impact into IBM and Amazon systems

* Teague Tomesh, now at Inflegtion
* Princeton CS PhD 2023

* Quantum algorithms and benchmarking for NISQ advantage
* Now at Infleqtion

* Prakash Murali, now at University of Cambridge, UK
* Princeton CS PhD 2021

* Sequence of papers on gate selection and optimizations across superconducting and trapped ion implementations
* ACM SIGARCH/IEEE CS TCCA Outstanding Dissertation Award (2022)

* AliJavadi-Abhari, now at IBM Q
* Princeton EE PhD 2017
* Lead on Scaffold QC Compiler/PL work + resource estimation and optimization

* Esin Tureci
* Associate Research Scholar at Princeton University

* Chuck Garcia, Summer Undergraduate Research Visitor from University of Texas, Austin*

* Ellie Vogel, Summer Undergraduate Research Visitor from Duke University*

* See our poster next!

