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An Analogy: Classical Computing in 1950



Alan Turing in 1950: 
“Can Machines Think?”
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Algorithms to Machines Gap: Status Check
NISQ Era shows 
distinct “chapters” of 
evolution
1. Compilation and 

Mapping
2. Co-Design
3. Bridging NISQ and 

Fault-tolerance via 
Modularity and 
Abstraction

Grovers Algorithm 
(Database search)
Shor’s Factoring Alg. (Crypto)

Gap!

Quantum Sim, 
Q Chem, QAOA
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This talk: Some examples and opportunities 
from each “NISQ Chapter” 

Quantum 
Compilation and 

Optimization

Benchmarking 
and Co-Design

Modularity and 
Abstraction



Quantum Compilation and Optimization

Mapping to Qubits Mitigating noise and calibration 
penalties

Balancing technology tailoring and 
portability Gate Set Selection and Optimization

NISQ Chapter 1: 
Compilation and 

optimization

Prakash Murali et al. ASPLOS’19. https://doi.org/10.1145/3297858.3304075
Prakash Murali, et al. ISCA 2019. https://doi.org/10.1145/3307650.3322273

Ali JavadiAbhari et al. CF 2014. https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf
P. Murali, et al, ISCA 2020. https://ieeexplore.ieee.org/abstract/document/9138945

https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3307650.3322273
https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf
https://ieeexplore.ieee.org/abstract/document/9138945


Our Work: Noise-Adaptive Compilation
• Compile once-per-execution using noise 

characterization data 
• Strategy 1: Place program qubits onto 

hardware qubits based on operation error 
rates
• Strategy 2: Reduce decoherence errors by 

scheduling gates to finish within the 
coherence time of each qubit
• Strategy 3: Reduce communication and use 

reliable routing paths, avoiding bad gates
• Full stack compiler targeted for a real QC 

system IBMQ16

Program 
operations

Hardware Qubits



Compilation 
Overview

Experiments with both
SMT and Heuristic approaches

Application 
LLVM IR

Machine Configuration
Daily Calibration Data

Optimization Objective, 
Routing Policy, Solver 
Choices

Compiler
Generate Configuration Constraints

Mapping 
Constraints

Scheduling 
Constraints

Routing 
Constraints

Generate Data-Aware Constraints

Readout Error 
Constraints

CNOT Time 
Constraints

CNOT Error 
Constraints

Solve Constrained Optimization

Qubit Mapping, Gate Scheduling and Routing

Executable OpenQASM Code Generation

Execute on real QC 
hardware



Significant Boost in Program Success Rate

• Scaffold -> LLVM -> Z3 -> IBM 16-qubit Rueschlikon
• Each “run” is 8192 runs, with results a distribution.
• Geomean 2.9X improvement in measured success rate over industry standard IBM Qiskit 

compiler
• Some benchmarks up to 18X

• Up to 9.2X over noise-unaware optimized baseline.
• Improvements because of optimal qubit movement, usage of best CNOTs and qubit 

readout units.
[Murali et al. ASPLOS 2019]



Quantum Compilation and Optimization

Mapping to Qubits Mitigating noise and calibration 
penalties

Balancing technology tailoring and 
portability Gate Set Selection and Optimization

NISQ Chapter 1: 
Compilation and 

optimization

Prakash Murali et al. ASPLOS’19. https://doi.org/10.1145/3297858.3304075
Prakash Murali, et al. ISCA 2019. https://doi.org/10.1145/3307650.3322273

Ali JavadiAbhari et al. CF 2014. https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf
P. Murali, et al, ISCA 2020. https://ieeexplore.ieee.org/abstract/document/9138945

…

https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3307650.3322273
https://mrmgroup.cs.princeton.edu/papers/CF2014.pdf
https://ieeexplore.ieee.org/abstract/document/9138945


Instruction Set Design for NISQ Executions
• ISA choices affect the instruction count and fidelity of QC programs

• ISA choices also affect calibration costs
•More gate types in the ISA => Higher calibration cost => Less time available for application 
computations

• Our work is the first to study the expressivity vs. calibration tradeoff in QC
•Similar to RISC vs. CISC choices in classical computer architecture

Quantum 
Volume Unitary

With CZ

With √ISWAP

Lingling Lao*, Prakash Murali*, Margaret Martonosi, Dan Browne, Designing Calibration and Expressivity-Efficient Instruction Sets for Quantum Computing, ISCA 2021



Instruction sets with continuous two-qubit gates
Rigetti: 𝑋𝑌(𝜃), Google: 𝑓𝑆𝑖𝑚(𝜃, ∅), 
ETH: 𝐶𝑃𝐻𝐴𝑆𝐸(𝜃)

Instruction sets with a single type of two-qubit gate
IBM (CNOT), early Rigetti and Google’s systems (CZ)
Application: Too restrictive, increases instruction count
Hardware: Easy to calibrate (<= 1 hour per day of calibration time on current systems)

Application: Very expressive, lower instruction count
Hardware: Difficult to calibrate a large number of gate types

Research Questions: Is there an ISA which is highly expressive for applications and easy 
to calibrate? Will a small number of two-qubit gate types provide sufficient expressivity 
for NISQ applications? What are the calibration overheads of such an instruction set?
Example: 𝑓𝑆𝑖𝑚(𝜋/2, 𝜋/6), 𝑓𝑆𝑖𝑚(𝜋/4,0), 𝑓𝑆𝑖𝑚(0, 𝜋), 𝑓𝑆𝑖𝑚(𝜋/2,0)



Result: Use ISAs with 4-8 types of two-qubit 
gates
• Method: Configurable toolflow to study ISA choices using 

realistic noise simulations of Rigetti and Google systems.
• Use 4-8 gate types to improve expressivity, fidelity:

• offers 1.5-2X reduction in instruction counts and fidelity, 
compared to a single gate type 

• near-optimal instruction counts and fidelity, compared to 
a fully continuous gate set

• Diminishing returns in fidelity after 8+ types

• Tradeoff in calibration time: 
• 4-8X higher calibration time compared to a single gate 

type, but still practical on current systems
• Two orders of magnitude lesser overhead than a 

continuous gate set 

• More details on toolflow, application suite, calibration model, 
noise variations across gate types in the paper.

QV Instruction count vs. Gate type
Choose gate types based on application + 

gate set characterization



This talk: Some examples and opportunities 
from each “NISQ Chapter” 

Quantum 
Compilation and 

Optimization

Benchmarking 
and Co-Design

Modularity and 
Abstraction



NISQ Chapter 2: Benchmarking and Co-Design

Designing benchmark suites and 
quantum program profiles 

[Supermarq]

Co-design for quantum chemistry 
applications [max-commute-tsp; 

simultaneous measurement]

C2QA XCite ARQUIN: Cross-layer co-
design for superconducting QC

Divide and conquer cross-layer 
strategies

NISQ Chapter 2: 
Benchmarking and 

Co-Design

Teague Tomesh et al. HPCA ’22 https://arxiv.org/abs/2202.11045
Teague Tomesh, et al. ICRC 2021. https://mrmgroup.cs.princeton.edu/papers/tomesh-term-grouping.pdf

James Ang et al. ACM TQC 2024. https://dl.acm.org/doi/pdf/10.1145/3674151

https://arxiv.org/abs/2202.11045
https://mrmgroup.cs.princeton.edu/papers/tomesh-term-grouping.pdf
https://dl.acm.org/doi/pdf/10.1145/3674151
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⋮ ⋱ ⋮
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Hamiltonian describes 
allowed energy levels 

of the system

Figure: Reiher et al. 2017, DOI:10.1073/pnas.1619152114

Goal: Molecular 
properties of 

drugs and 
materials

Difficult: 
Exponential 
state space 

requirements

Use a QC to 
simulate a 
quantum 
system!

Increasing 
complexity

Example: Co-Design for Quantum Chemistry Apps



• Trotterization ⇨ to simulate the system on a QC, we break the evolution up into discretized timesteps

Algorithmic error

𝑟 = #𝑡 Δ𝑡

𝑟 = 1	 → 𝜀!

𝑟 = 2	 → 𝜀" < 𝜀!

𝑟 = 𝑅	 → 𝜀# < 𝜀#$!

…

…

Physical error in 
NISQ systems

Balancing algorithmic and physical error

Hamiltonian simulation 
applications suffer from 

algorithmic and physical errors. 
Is there a way to simultaneously 

minimize both?

“Trotter number”

• Physical error ⇨ Gates in real QC systems inject further error due to insufficient control fidelity 



• The QC sequentially simulates each Pauli term 
• The compiler selects an ordering

• Not all orderings equal

Lexicographic (LEX):

Magnitude (MAG):

𝐻 = 5	𝐼𝐼𝐼𝑌 + 7	𝐼𝑌𝑋𝑋 + 6	𝑌𝐼𝐼𝑌 + 9	𝑌𝑋𝑌𝑋 + 4	𝑌𝑌𝐼𝑌 + 8	𝑌𝑌𝑌𝑌 + 3	𝑍𝐼𝐼𝐼 + 2	𝑍𝐼𝑍𝐼 + 𝑍𝑍𝑍𝑍

𝐻 = 9	𝑌𝑋𝑌𝑋 + 8	𝑌𝑌𝑌𝑌 + 7	𝐼𝑌𝑋𝑋 + 6	𝑌𝐼𝐼𝑌 + 5	𝐼𝐼𝐼𝑌 + 4	𝑌𝑌𝐼𝑌 + 3	𝑍𝐼𝐼𝐼 + 2	𝑍𝐼𝑍𝐼 + 𝑍𝑍𝑍𝑍

Max-Commute-TSP (MCTSP)
1. Group commuting terms
2. Order terms within each group
3. Clique-clique ordering heuristic

• Tranter et al. J. Chem. Theory Comput. 2018, 14, 11, 5617–5630 (mitigates physical errors well)

• Tranter et al. Entropy. 2019, 21(12):1218 (mitigates algorithmic errors well)

Our solution: Full-stack co-design ->
Commutation-aware compilation

… …

Optimized Quantum Program Execution Ordering to Mitigate Errors in 
Simulations of Quantum Systems. T Tomesh, et al. 

2021 International Conference on Rebooting Computing. Best Paper.

https://scholar.google.com/scholar?oi=bibs&cluster=12697299836604280126&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=12697299836604280126&btnI=1&hl=en


• Average over 79 benchmark molecules 
• Diamond distance measures algorithmic error:

Simulation steps:
1. First, increase the Trotter number r until the 

error reaches a threshold 𝜖 < 0.1
2. Then, compute the number of CNOTs in the 

final quantum circuit.

quantum channels

Mitigating both algorithmic and physical errors results in 40% fewer CNOTs than LEX and MAG

Noiseless simulation reveals the impact of codesign

22
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Experimental steps:
1. Prepare an initial state
2. Generate an HS circuit with a particular ordering
3. Measure the Hellinger infidelity (1 − 𝐻!)

probability distributions

Mitigating algorithmic errors is crucial even in the NISQ regime

Real HW executions show further importance of 
NISQ codesign

23

(lower is better)



Takeaways: Application-specific co-design
• Cross-layer focus enable coordinated mitigation of both algorithmic and 

physical errors 
• Compiler benefits remain relevant even in the fault-tolerant era
• Similar techniques can be adapted to other applications

$ O (N^ 3) $ Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians. 
P Gokhale, et al. IEEE Transactions on Quantum Engineering, 2020

Optimization of simultaneous measurement for variational quantum eigensolver applications
P Gokhale, et al. 

2020 IEEE International Conference on Quantum Computing and Engineering. Best Paper.  

Divide and Conquer for Combinatorial Optimization and Distributed Quantum Computation
T. Tomesh, et al. 2023 IEEE International Conference on Quantum Computing and Engineering 

(QCE), Bellevue, WA, USA, 2023

https://scholar.google.com/scholar?oi=bibs&cluster=5441920167033317573&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=15814204672437211178&btnI=1&hl=en


This talk: Some examples and opportunities 
from each “NISQ Chapter” 

Quantum 
Compilation and 
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NISQ Chapter 3: Towards Scale

HetArch: Heterogeneous and 
Modular QC design libraries Distributed Quantum Computation

Hybrid Classical/Quantum 
Computing Circuit Cutting and Circuit Knitting

NISQ Chapter 3: 
Modularity and 

Abstraction

Sam Stein et al. MICRO ’23 https://dl.acm.org/doi/abs/10.1145/3613424.3614300
Wei Tang, et al. ASPLOS 2021. https://dl.acm.org/doi/abs/10.1145/3445814.3446758

Wei Tang et al. ArXiv 2022. https://arxiv.org/abs/2207.00933

https://dl.acm.org/doi/abs/10.1145/3613424.3614300
https://dl.acm.org/doi/abs/10.1145/3445814.3446758
https://arxiv.org/abs/2207.00933


From Sea-of-
qubit 

architectures to 
differentiated 
functionality



Heterogeneity and Modularity -> Scale

Specialized modules 
can streamline 
mapping from 
application to 

hardware, but…

Unconstrained 
specialization 
can be worse 
than sea-of-

qubits

We’ve faced this before!
Can we learn from the 

Mead & Conway approach?



Our Solution: 
HetArch

• A methodology and toolbox for the systematic design and simulation of 
modular, heterogeneous quantum microarchitectures
• Hierarchical hardware synthesis method to decompose high-level subroutines
• Design rules to systematically design quantum standard cells
• Design space exploration framework that efficiently simulates performance

Samuel Stein, et al.. 2023. MICRO 23. https://doi.org/10.1145/3613424.3614300



Our Solution: 
HetArch

• A methodology and toolbox for the systematic design and simulation of 
modular, heterogeneous quantum microarchitectures
• Hierarchical hardware synthesis method to decompose high-level subroutines
• Design rules to systematically design quantum standard cells
• Design space exploration framework that efficiently simulates performance

Execute subroutines

Execute operations

Qubits

Samuel Stein, et al.. 2023. MICRO 23. https://doi.org/10.1145/3613424.3614300



HetArch Devices

• Compute desires high connectivity and fast, high-fidelity gates
• Planar transmon

• Storage desires long coherence times and multi-qubit capacity
• Multimode resonator

• HetArch’s Devices Abstraction:
• Abstracts away actual implementation technology
• But retains basic, simplifying distinction between “compute” and “storage” functionality
• Aimed at central tradeoff between long coherence time and high connectivity



Standard Cells & Design Rules
• HetArch Standard Cells = Functional units composed of devices, optimized for 

particular operation(s), complying by architectural design rules independent of 
device implementation technology
• Example Design Rules

• Compute devices should be connected to at most 4 other devices.
• Storage devices should be connected to exactly 1 compute device to maximize coherence.
• …

• Standard Cells are pre-characterized by detailed density matrix simulation → 
time, fidelity of operation

“Parity Check Cell” “Universal Stabilizer Cell”



More in the Paper
• Use multi-level modular abstractions to 

project and optimize behavior of complex 
units without requiring full device-level 
simulation
• Demonstrate on Code Teleportation and 

other examples



NISQ Chapter 3: Towards Scale

HetArch: Heterogeneous and 
Modular QC design libraries Distributed Quantum Computation

Hybrid Classical/Quantum 
Computing Circuit Cutting and Circuit Knitting

NISQ Chapter 3: 
Modularity and 

Abstraction

Sam Stein et al. MICRO ’23 https://dl.acm.org/doi/abs/10.1145/3613424.3614300
Wei Tang, et al. ASPLOS 2021. https://dl.acm.org/doi/abs/10.1145/3445814.3446758

Wei Tang et al. ArXiv 2022. https://arxiv.org/abs/2207.00933

https://dl.acm.org/doi/abs/10.1145/3613424.3614300
https://dl.acm.org/doi/abs/10.1145/3445814.3446758
https://arxiv.org/abs/2207.00933


Modularity and Scale: Cut QC Circuits to fit onto 
NISQ Platforms
• Goal: Make use of NISQ devices despite 

the noise and capacity challenges.
• Approach: Cut QC circuits into sub-parts 

that fit, and sew together results 
classically afterwards
• Challenge: Classical reconstruction is 

time and resource-intensive!
• Our Work: First practical circuit cutting 

toolchain that beats classical simulation 
in runtime, and NISQ in fidelity and 
circuit sizes.

Cut Selection: Cut large 
problem into smaller sub-

problems

Quantum Execution: Run on 
one or more QPUs

Classical Reconstruction: 
Combine sub-results with 

classical computing



CutQC: Combining Classical and Quantum 
Computation to run QC algorithms at larger scale

• CutQC: Cut + Quantum Processing + Classical Processing
1. Select Cut Points: Mixed Integer Programming (MIP) automatically locates efficient cut 

points in large QC algorithm circuits and splits into small subcircuits runnable on NISQ 
platforms.

2. Run QC subcircuits: Small NISQ platforms evaluate the subcircuits.
3. Reconstruct: Classical reconstruction approaches sew subcircuits back together, produce 

the uncut output in full definition (FD) or dynamically adjust the definition (DD).
• Our work is the first practical circuit cutting toolchain that beats classical 

simulation in runtime, and NISQ in fidelity and circuit sizes.

0 , 1 , + , |𝑖⟩

𝐼, 𝑋, 𝑌

Example: Cut one edge to split a 5-qubit circuit into two smaller 
(3-qubit each) subcircuits.

Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, Margaret 
Martonosi, CutQC: Using Small Quantum Computers for Large 

Quantum Circuit Evaluations, ASPLOS 2021



Result: Runtime Improvement vs. Simulation
• 60X-8600X speedup over the classical 

simulation baseline (IBM Qiskit) 

• Insights:
• Densely connected circuits are harder to cut.
• Larger quantum circuits generally require 

more postprocessing.
• Having larger quantum computers generally 

improves the runtime but has diminishing 
returns. E.g. 5*7 supremacy admits the same 
cuts on 20-, and 25-q QC.

AQFT
Supremacy Adder

Classical Simulation
BV
Grover
HWEA



To Scale Further…
• Dynamic definition: Zoom in on states of particular interest, to reduce 

reconstruction required
• Parallel GPUs: See our poster here!
• Tensor Optimizations: Exploit modern GPUs and tensor contraction 

optimizations to further reduce reconstruction complexity and time

Find open source Github, full paper, full talk here: 
https://www.wtang.page

https://www.wtang.page/


What’s next?

Quantum 
Compilation and 

Optimization

Benchmarking 
and Co-Design

Modularity and 
Abstraction



OS

High-Level Languages

Compiler

Architecture

VLSI Circuits

Semiconductor transistors

Algorithms Algorithms

Qubit implementations

High-level QC Languages.
Compilers.

Optimization.
Error Correcting Codes

Orchestrate classical gate 
control, 

Orchestrate qubit motion 
and manipulation. 
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Gates, registers
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Mind the Gaps!

41

Capability Gap: 
Algorithms to 

Devices

Topical Gap: Between 
Algorithms and 

Devices is a world of 
QSE research



With thanks to my amazing co-authors
• Wei Tang*

• Final Year Princeton CS PhD student
• Circuit cutting and optimizations
• Impact into IBM and Amazon systems

• Teague Tomesh, now at Infleqtion
• Princeton CS PhD 2023
• Quantum algorithms and benchmarking for NISQ advantage
• Now at Infleqtion

• Prakash Murali, now at University of Cambridge, UK
• Princeton CS PhD 2021
• Sequence of papers on gate selection and optimizations across superconducting and trapped ion implementations
• ACM SIGARCH/IEEE CS TCCA Outstanding Dissertation Award (2022)

• Ali Javadi-Abhari, now at IBM Q
• Princeton EE PhD 2017
• Lead on Scaffold QC Compiler/PL work + resource estimation and optimization

• Esin Tureci
• Associate Research Scholar at Princeton University

• Chuck Garcia, Summer Undergraduate Research Visitor from University of Texas, Austin*
• Ellie Vogel, Summer Undergraduate Research Visitor from Duke University*

* See our poster next!


